Math 10A with Professor Stankova
Quiz 7; Wednesday, 10/11/2017
Section \#107; Time: 11 AM
GSI name: Roy Zhao
Name:

Circle True or False or leave blank. (1 point for correct answer, -1 for incorrect answer, 0 if left blank)

1. TRUE False For $f(x)$ continuous on $[a, b]$, the function $F(x)=\int_{a}^{x} f(u) d u$ is the unique anti-derivative of f on $[a, b]$ satisfying $F(a)=0$.
2. TRUE False If $f(x)$ is continuous on $[a, b]$, then $F(x)=\int_{a}^{x} f(u) d u$ is continuous on (a, b).
Show your work and justify your answers. Please circle or box your final answer.
3. (10 points) (a) (3 points) Write $\int_{2}^{5} \sqrt{1+\sqrt{x}} d x$ as a limit of right endpoint Riemann sums (no need to calculate it).

Solution: The interval [2,5] has length 3 so each subinterval will have length $\frac{3}{n}$. These subintervals are $[2,2+3 / n],[2+3 / n, 2+6 / n], \ldots,[5-3 / n, 5]$. Using the right endpoint method, we have

$$
\begin{gathered}
\int_{2}^{5} \sqrt{1+\sqrt{x}} d x=\lim _{n \rightarrow \infty} R_{n} \\
=\lim _{n \rightarrow \infty}\left[\sqrt{1+\sqrt{2+\frac{3}{n}}} \cdot \frac{3}{n}+\sqrt{1+\sqrt{2+\frac{6}{n}}} \cdot \frac{3}{n}+\cdots+\sqrt{1+\sqrt{5}} \cdot \frac{3}{n}\right] \\
=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \sqrt{1+\sqrt{2+\frac{3 i}{n}}} \cdot \frac{3}{n}
\end{gathered}
$$

(b) (7 points) Find $\int \sqrt{1+\sqrt{x}} d x$

Solution: We guess $u=\sqrt{1+\sqrt{x}}$ and so $u^{2}=1+\sqrt{x}$ and $x=\left(u^{2}-1\right)^{2}=$ $u^{4}-2 u^{2}+1$. So we have that $d x=\left(4 u^{3}-4 u\right) d u$ and so

$$
\begin{aligned}
& \int \sqrt{1+\sqrt{x}} d x=\int u\left(4 u^{3}-4 u\right) d u=\int 4 u^{4}-4 u^{2} d u . \\
= & \frac{4 u^{5}}{5}-\frac{4 u^{3}}{3}+C=\frac{4(1+\sqrt{x})^{5 / 2}}{5}-\frac{4(1+\sqrt{x})^{3 / 2}}{3}+C .
\end{aligned}
$$

